Instationary modal Analysis for Impulse-type stimulated structures

Abstract

In order to determine modal parameters, classical experimental modal analysis can be used in engineering application. This method finds a system frequency response function using fast Fourier Transform (FFT). The Fourier Transform is one type of global data analysis method. The frequency resolution is equal to the reciprocal of the total sample time. So applying the FFT is not suitable for any transient signal to reveal local characteristics. However, in modern manufacturing industries, processing forces are rapidly changing. The dynamic behavior may vary rapidly in a short time due to variations in the machining parameters and changes in boundary conditions. These nonlinear and non-stationary dynamic parameters are not constant during machining operations identification using FFT. In this research, an innovative transient signal analysis approach has been developed, which is based on an application of the least squares estimation. The proposed method provides transient information with high resolution and to identify the time-varying modal parameters during machining. Least squares estimation can be augmented with a sliding-window operation (SWLSE) to reveal the actual system dynamic behavior at any moment. The accuracy of this method depends on the window size, the noise ratio and the sampling rate etc. The estimation accuracy of modal parameters is discussed in this work. To examine the efficiency of the SWLSE method experimental tests are performed on a laboratory beam system and the results are compared with the classical experimental modal analysis (CEMA) method. The laboratory beam system is designed and assembled that the stiffness and damping ratio of the structure can be adjusted. Additionally, the proposed method is applied to the identification of the actual modal parameters of machine tools during machining operations. In another application, the proposed method provides also the process varied damping information in a process monitoring

    Similar works