research

Localised tuneable composition single crystal silicon-germanium-on-insulator for low cost devices

Abstract

The realisation of high quality silicon-germanium-on-insulator (SGOI) is a major goal for the field of silicon photonics because it has the potential to enable extremely low power active devices functioning at the communication wavelengths of 1.3 µm and 1.55 µm. In addition, SGOI has the potential to form faster electronic devices such as BiCMOS transistors, and could also form the backbone of a new silicon photonics platform that extends into the mid-IR wavelengths for applications in, amongst others, sensing and telecoms. In this paper, we present a novel method of forming single crystal, defect free SGOI using a rapid melt growth technique. We use tailored structures to form localised uniform composition SGOI strips, which are suitable for state of the art device fabrication. This technique could pave the way for the seamless integration of electronic and photonic devices using only a single, low cost Ge deposition step

    Similar works