research

Large-System Analysis of Correlated MIMO Multiple Access Channels with Arbitrary Signaling in the Presence of Interference

Abstract

Presence of multiple antennas on both sides of a communication channel promises significant improvements in system throughput and power efficiency. In effect, a new clas s of large multiple-input multiple-output (MIMO) communication systems has recently emerged and attracted both scientific and industrial attention. To analyze these systems in realistic scenarios, one has to include such aspects as co-channel interference, multiple access and spatial correlation. In this paper, we study the properties of correlated MIMO multiple-access channels in the presence of external interference. Using the replica method from statistical physics, we derive the ergodic sum-rate of the communication for arbitrary signal constellations when the numbers of antennas at both ends of the channel grow large. Based on these asymptotic expressions, we also address the problem of sum-rate maximization using statistical channel information and linear precoding. The numerical results demonstrate that when the interfering terminals use discrete constellations, the resulting interference becomes easier to handle compared to Gaussian signals. Thus, it may be possible to accommodate more interfering transmitter-receiver pairs within the same area as compare d to the case of Gaussian signals. In addition, we demonstrate numerically for the Gaussian and QPSK signaling schemes that it is possible to design precoder matrices that significantly improve the achievable rates at low-to-mid range of signal-to-noise ratios when compared to isotropic precoding

    Similar works