research

Terahertz Microstrip Elevated Stack Antenna Technology on GaN-on-Low Resistivity Silicon Substrates for TMIC

Abstract

In this paper we demonstrate a THz microstrip stack antenna on GaN-on-low resistivity silicon substrates (ρ < 40 Ω.cm). To reduce losses caused by the substrate and to enhance performance of the integrated antenna at THz frequencies, the driven patch is shielded by silicon nitride and gold in addition to a layer of benzocyclobutene (BCB). A second circular patch is elevated in air using gold posts, making this design a stack configuration. The demonstrated antenna shows a measured resonance frequency in agreement with the modeling at 0.27 THz and a measured S11 as low as −18 dB was obtained. A directivity, gain and radiation efficiency of 8.3 dB, 3.4 dB, and 32% respectively was exhibited from the 3D EM model. To the authors' knowledge, this is the first demonstrated THz integrated microstrip stack antenna for TMIC (THz Monolithic Integrated Circuits) technology; the developed technology is suitable for high performance III-V material on low resistivity/high dielectric substrates

    Similar works