research
Price Adjustment to News with Uncertain Precision
- Publication date
- Publisher
Abstract
Bayesian learning provides the core concept of processing noisy information. In standard Bayesian frameworks, assessing the price impact of information requires perfect knowledge of news’ precision. In practice, however, precision is rarely dis- closed. Therefore, we extend standard Bayesian learning, suggesting traders infer news’ precision from magnitudes of surprises and from external sources. We show that interactions of the different precision signals may result in highly nonlinear price responses. Empirical tests based on intra-day T-bond futures price reactions to employment releases confirm the model’s predictions and show that the effects are statistically and economically significant.Bayesian Learning, Macroeconomic Announcements, Information Quality, Precision Signals