Abstract

Network analysis is an essential component of systems biology approaches toward understanding the molecular and cellular interactions underlying biological systems functionalities and their perturbations in disease. Regulatory and signalling pathways, which involve DNA, RNA proteins and metabolites as key elements, coordinate most aspects of cellular functioning. Cellular processes, which are dependent on the structure and dynamics of gene regulatory networks, can be studied by employing a network representation of molecular interactions. In this chapter we describe several types of networks and how combination of different analytic approaches can be used to study diseases. We provide a list of selected tools for visualization and network analysis. We introduce protein-protein interaction networks, gene regulatory networks, signalling networks and metabolic networks. We then define concepts underlying network representation of cellular processes and molecular interactions. We finally discuss how the level of accuracy in inferring functional relationships influences the choice of methods applied for the analysis of a particular network type

    Similar works