CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Scaling-laws of human broadcast communication enable distinction between human, corporate and robot Twitter users.
Authors
A Faisal
G Tavares
Publication date
3 July 2013
Publisher
'Public Library of Science (PLoS)'
Doi
View
on
PubMed
Abstract
Human behaviour is highly individual by nature, yet statistical structures are emerging which seem to govern the actions of human beings collectively. Here we search for universal statistical laws dictating the timing of human actions in communication decisions. We focus on the distribution of the time interval between messages in human broadcast communication, as documented in Twitter, and study a collection of over 160,000 tweets for three user categories: personal (controlled by one person), managed (typically PR agency controlled) and bot-controlled (automated system). To test our hypothesis, we investigate whether it is possible to differentiate between user types based on tweet timing behaviour, independently of the content in messages. For this purpose, we developed a system to process a large amount of tweets for reality mining and implemented two simple probabilistic inference algorithms: 1. a naive Bayes classifier, which distinguishes between two and three account categories with classification performance of 84.6% and 75.8%, respectively and 2. a prediction algorithm to estimate the time of a users next tweet with an R2 ≈0.7. Our results show that we can reliably distinguish between the three user categories as well as predict the distribution of a users inter-message time with reasonable accuracy. More importantly, we identify a characteristic power-law decrease in the tail of inter-message time distribution by human users which is different from that obtained for managed and automated accounts. This result is evidence of a universal law that permeates the timing of human decisions in broadcast communication and extends the findings of several previous studies of peer-to-peer communication. © 2013 Tavares, Faisal
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Directory of Open Access Journals
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:doaj.org/article:10a3e953d...
Last time updated on 14/10/2017
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1371%2Fjournal.pon...
Last time updated on 01/04/2019
Supporting member
Spiral - Imperial College Digital Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:spiral.imperial.ac.uk:1004...
Last time updated on 17/02/2017