research

Influence of time-dependence on failure of echelon rock joints through a novel DEM model

Abstract

This is an Accepted Manuscript of an article published by Taylor & Francis Group in [European Journal of Environmental and Civil Engineering] on [September 2015], available online at: http://www.tandfonline.com/10.1080/19648189.2015.1064624This article investigates the time-dependent influence on the shear failure behaviour of parallel rock joints in the echelon arrangement due to chemical weathering, which can be treated as a generalised time-dependency of the rock material. A time-dependent parameter alpha, identifying the accumulated relative mass removal of bonding material, has been implemented into a novel distinct element method bond contact model. This model is based on a series of mechanical test on bonded aluminium rods with different bond geometries. The numerical direct shear test results of echelon rock joints characterised by different values of alpha show that increasing time-dependent parameter alpha can lead to a lower crack initiation and peak stresses. This is accompanied by a growing ratio of the microscopic compressive-shear-torsional (CST) bond failure number of bond failures to the total number of failures, except for the case without weathering influence. High values of alpha render the material bridge a weaker part to be cut through, generating a large number of CST bond breakages along the central shear axis.Peer ReviewedPostprint (author's final draft

    Similar works