A numerical study of tropical cross-tropopause transport by convective overshoots

Abstract

International audienceObservations obtained during the Tropical Convection, Cirrus and Nitrogen Oxides (TROCCINOX) golden day have revealed the presence of ice particles up to 410 K (18.2 km) 2 km above the local tropopause. The case was investigated using a three-dimensional quadruply nested non-hydrostatic simulation and Meteosat Second Generation (MSG) observations. The simulation reproduced the measurements along the flight track fairly well. A reasonable agreement with MSG observations was also achieved: the 10.8-µm brightness temperature (BT) minimum of 187 K was reproduced (a value 6 K colder than the environmental cold-point temperature) as was the positive BT difference between the 6.2- and 10.8-µm bands, an overshoot signature. The simulation produced several overshooting plumes up to 410 K yielding an upward transport of water vapour of a few tons per second across the tropical tropopause. The estimated mass flux agrees with those derived from over tracer budgets, indicating that convection transports mass across the tropopause

    Similar works