Hybrid mesh/particle meshless method for modeling geological flows with discontinuous transport properties

Abstract

In the present paper, we introduce the Finite Difference Method-Meshless Method (FDM-MM) in the context of geodynamical simulations. The proposed numerical scheme relies on the well-established FD method along with the newly developed “meshless” method and, is considered as a hybrid Eulerian/Lagrangian scheme. Mass, momentum, and energy equations are solved using an FDM method, while material properties are distributed over a set of markers (particles), which represent the spatial domain, with the solution interpolated back to the Eulerian grid. The proposed scheme is capable of solving flow equations (Stokes flow) in uniform geometries with particles, “sprinkled” in the spatial domain and is used to solve convection- diffusion problems avoiding the oscillation produced in the Eulerian approach. The resulting algebraic linear systems were solved using direct solvers. Our hybrid approach can capture sharp variations of stresses and thermal gradients in problems with a strongly variable viscosity and thermal conductivity as demonstrated through various benchmarking test cases. The present hybrid approach allows for the accurate calculation of fine thermal structures, offering local type adaptivity through the flexibility of the particle method

    Similar works