research

Active Vibration Control of Structures using an Impedance Matching Control Technique

Abstract

Active vibration control of structures has gained a lot of interest in recent years. This paper presents an active vibration control methodology of a structure using piezoelectric actuators. The proposed methodology is useful in practical applications where the system to be controlled is difficult to model due to the presence of complex boundary conditions. The impedance matching control technique uses a power flow approach wherein the controller is designed such that the power flow into the structure is minimized. The system transfer function is obtained from the experimental collocated actuator/sensor pair data using Eigen Realisation Algorithm (ERA). The controller is designed for the system transfer function according to impedance matching theory. The above approach is targeted towards the vibration control of wind tunnel stings, which suffer from flow-induced vibration. A wind tunnel sting model is designed and fabricated for this study. The real time implementation of the impedance matching controller has been carried out using dSPACE® Digital Signal Processor (DSP) card. The results are encouraging and demonstrate the feasibility of applying this technique in the wind tunne

    Similar works