Applications and Integration of Optical Frequency Combs

Abstract

Optical frequency combs have a wide range of applications in science and technology, including but not limited to timekeeping, optical frequency synthesis, spectroscopy, searching for exoplanets, ranging, and microwave generation. The integration of microresonator with other photonic components enables the high-volume production of wafer-scale optical frequency combs, soliton microcombs. However, it faces two considerable obstacles: optical isolation, which is challenging to integrate on-chip at acceptable performance levels, and power-hungry electronic control circuits, which are required for the generation and stabilization of soliton microcombs. In this thesis, we describe the design and early commissioning of the laser frequency comb for astronomical calibration using electro-optic modulation. We also focus on the realization of a novel and compact chip-scale optical frequency comb, soliton microcomb, including the progress made towards the visible soliton microcomb generation and the demonstration of low power operation of a soliton microcomb along contours of constant power in the phase space. We introduce a soliton spectrometer using dual-locked counter-propagating soliton microcombs to provide high-resolution frequency measurement. Finally, we look into the integration of lasers and high-Q microresonators. The self-injection locking process has been shown to create a new turnkey soliton operating point that eliminates difficult-to-integrate optical isolation as well as complex startup and feedback loops. Moreover, this technique also simplifies the access to high-efficiency dark soliton states without special dispersion engineering of microresonators

    Similar works