Automatische sequentielle Zuordnung von mehrdimensionalen
Protein-NMR-Spektren sowie molekulardynamisch gestützte
stereospezifische Zuordnung von Seitenkettenamidgruppen in
Modellpeptiden
Im ersten Teil dieser Arbeit wurden die stereospezifischen Zuordnungen der Seitenkettenamidgruppen der Random-Coil-Modellpeptide Gly-Gly-Asn-Ala-NH2 und Gly-Gly-Gln-Ala-NH2 ermittelt. Stereospezifische Zuordnungen werden meistens mit Hilfe von Datenbanken bereits gelöster Biomoleküle bestimmt. Die bekannteste dieser Datenbanken ist die Biological Magnetic Resonance Data Bank (BMRB). Untersucht man die in der BMRB gespeicherten chemischen Verschiebungen genauer, so findet man Inkonsistenzen bei den stereospezifischen Zuordnungen. Es wurde außerdem festgestellt, dass die beiden Programme SHIFTS und SHIFTX, die chemischen Verschiebungen aus den 3D-Strukturen von Peptiden und Proteinen vorhersagen können, Resonanzen ebenfalls stereospezifisch falsch zuordnen können.
Für die stereospezifische Zuordnung wurden NOESY-Spektren der Random-Coil-Peptide von Gly-Gly-Asn-Ala-NH2 und Gly-Gly-Gln-Ala-NH2 aufgenommen. Mit AUREMOL RELAX, das den vollständigen Relaxationsmatrixformalismus verwendet, wurden entsprechende Spektren aus Molekulardynamik (MD) Rechnungen der beiden Tetrapeptide simuliert. Ein Vergleich der experimentellen und simulierten Signalvolumina erbrachte eine eindeutige stereospezifische Zuordnung der Random-Coil-Verschiebungen der Seitenkettenamid- und Hβ-Protonen der beiden Aminosäuren.
Die vorgestellte Methode hat das Potential in zukünftigen Arbeiten auf einen großen Teil aller Aminosäuren übertragen zu werden, um eine vollständige stereospezifische Random-Coil-Verschiebungsdatenbank zu erzeugen.
Im zweiten Teil der Arbeit wurde SIBASA, das neue AUREMOL Modul zur automatischen Zuordnung von HSQC-Spektren und NMR-Protonenresonanzen vorgestellt. SIBASA basiert auf dem Top-Down-Ansatz und bestimmt die vollständige Zuordnung eines Proteins, indem es die optimale Übereinstimmung zwischen experimentellen und mit variablen chemischen Verschiebungen zurückgerechnete NOESY-Spektren findet. Durch den Top-Down-Ansatz ist es möglich 2-D-NOESY-Spektren von großen Proteinen als Informationsquelle der automatische Zuordnung zu verwenden. SIBASA benötigt für die vollständige Zuordnung der Protonen und Stickstoffresonanzen eine 3D-Struktur des Proteins, das 2-D-NOESY- und das 3D 15N-NOESY-HSQC-Spektrum. Die Rückrechnungen der NOESY-Spektren werden wieder mit AUREMOL RELAX erzeugt. RELAX wertet zudem MD-Trajektorien aus, um Informationen über lokale Beweglichkeit im Protein erhalten. Mithilfe der Programme SHIFTS und SHIFTX2 kann SIBASA Wahrscheinlichkeitsdichteverteilungen der chemischen Verschiebungen der zuzuordnen Kerne aus der MD-Trajektorie des betrachten Proteins vorhersagen, was zur Verbesserung der Zuverlässigkeit und Geschwindigkeit der automatischen Zuordnung führt.
Die optimale Übereinstimmung der experimentellen und der zurückgerechneten NOESY-Spektren wird durch den Threshold-Accepting-Algorithmus, der in mehreren Instanzen mit verschiedenen Startzuordnung ausgeführt wird, bestimmt. Mehrere Instanzen helfen SIBASA die wahrscheinlichste vollständige Zuordnung zu finden und sind Voraussetzung für die Verifikation. SIBASA ist in der Lage, jeder automatisch gefundene Zuordnung eine Wahrscheinlichkeit zuzuordnen.
Die automatische Zuordnung wurde mit den NOESY-Spektren und den Röntgenstrukturen der Proteine von S. aureus HPr (H15A) (88 Aminosäuren), von Thioredoxin Plasmodium falciparum (PfTrx) (104 Aminosäuren) und von Ras(T35S)-GppNHp (166 Aminosäuren) getestet. SIBASA konnte 91,3 % der Resonanzen von HPr (H15A), 81,9 % der Resonanzen von PfTrx und 77,6 % der Resonanzen von Ras(T35S)-GppNHp richtig zuordnen. Eine Verifikation auf dem signifikanten Niveau ermöglicht es, einen großen Teil der falschen Zuordnungen von den richtigen zu trennen. Insgesamt erhielten 77,8 % der automatisch gefunden Resonanzzuordnungen von HPr (H15A), 77,5 % der gefunden Resonanzzuordnungen von PfTrx und 66,8 % der Resonanzzuordnungen von Ras(T35S)-GppNHp von SIBASA eine Wahrscheinlichkeit von mindestens 95 %. Von diesen Resonanzen sind beim HPr (H15A) nur 3,5 %, beim PfTrx nur 9,7 % und beim Ras(T35S)-GppNHp nur 10,2 % falsch zugeordnet worden.
Es wurde anhand der drei Proteine gezeigt, dass SIBASA in der Lage ist HSQC-Spektren sicher teilzuordnen. Das HSQC-Spektrum von HPr (H15A) konnte von SIBASA vollständig richtig zugeordnet werden. Beim PfTrx waren 90 % und beim Ras(T35S)-GppNHp 88 % der automatisch gefundenen HSQC-Zuordnungen richtig. Vertraut man nur Zuordnungen von HSQC-Signalen, die von SIBASA bestätigt wurden, so konnten 82 % der Signale von HPr (H15A), 72 % der Signale von PfTrx und 68 % der HSQC-Signale des Ras(T35S)-GppNHp richtig zugeordnet werden. In keinem Fall enthielt die Gruppe der bestätigten Signale eine falsche Zuordnung.
Das vorgestellte Modul ermöglicht es für die Wirkstoffentwicklung wichtige [1H,15N]-HSQC-Spektren automatisch zuzuordnen, ohne auf die umständliche Markierung der Proteine mit dem Isotop 13C zurückgreifen zu müssen, wobei eine Kristall- oder eine NMR-Struktur eines homologen Proteins verfügbar ist