research

Influence of acidification on dough viscoelasticity of gluten-free rice starch-based dough matrices enriched with exogenous protein

Abstract

The impact of acid incorporation (acetic+lactic, 0.5%) into rice starch-based doughs enriched with different proteins (egg albumin, calcium caseinate, pea protein and soy protein isolates) at different doses (0, 5 and 10%) has been investigated on dough viscoelastic and pasting profiles. Oscillatory (stress and frequency sweeps) and creep-recovery tests were used to characterize the fundamental viscoelastic behaviour of the doughs, and thermomechanical assays were performed to assess dough viscometric performance. Supplementation of gluten-free doughs with proteins from vegetal sources led to more structured dough matrices (higher viscoelastic moduli and steady viscosities, and lower tan. ¿, instantaneous and retarded elastic compliances) effect being magnified with protein dose. Acid addition decreased these effects. Incorporation of proteins from animal source resulted in different viscoelastic behaviours according to the protein type, dosage and acidification, especially for casein. Acidification conferred lower dough deformation and notably higher steady viscosity and viscoelastic moduli for 5 %-casein-added dough. Protein-acid interaction favoured higher viscosity profiles, particularly for doughs with proteins of vegetable origin and lower dosage. Dough acidification decreased the pasting temperatures and the amylose retrogradation. Acidification of protein-enriched rice-starch doughs allowed manipulation of its viscometric and rheological properties which is of relevant importance in gluten-free bread development.Authors gratefully acknowledge the financial support of the Spanish Institutions Ministerio de Economía y Competitividad and the European Regional Development Fund (FEDER) (Projects AGL2012-35088 and AGL2011-22669) and Comunidad de Castilla y León (Project VA252A12-2).Peer Reviewe

    Similar works