research

Determination of sequential best replies in n-player games by Genetic Algorithms

Abstract

An iterative algorithm for establishing the Nash Equilibrium in pure strategies (NE) is proposed and tested in Cournot Game models. The algorithm is based on the convergence of sequential best responses and the utilization of a genetic algorithm for determining each player's best response to a given strategy profile of its opponents. An extra outer loop is used, to address the problem of finite accuracy, which is inherent in genetic algorithms, since the set of feasible values in such an algorithm is finite. The algorithm is tested in five Cournot models, three of which have convergent best replies sequence, one with divergent sequential best replies and one with \local NE traps"(Son and Baldick 2004), where classical local search algorithms fail to identify the Nash Equilibrium. After a series of simulations, we conclude that the algorithm proposed converges to the Nash Equilibrium, with any level of accuracy needed, in all but the case where the sequential best replies process diverges.Genetic Algorithms, Cournot oligopoly, Best Response, Nash Equilibrium

    Similar works