This paper examines automated genre classification of text documents and its role in enabling the effective management of digital documents by digital libraries and other repositories. Genre classification, which narrows down the possible structure of a document, is a valuable step in
realising the general automatic extraction of semantic metadata essential to the efficient management and use of digital objects. In the present report, we present an analysis of word frequencies in different genre classes in an effort to understand the distinction between independent classification tasks. In particular, we examine automated experiments on thirty-one genre classes to determine the relationship between the word frequency metrics and the degree of its significance in carrying out classification in varying environments