Forested buffers in agricultural landscapes : mitigation effects on stream–riparian meta-ecosystems

Abstract

Stream–riparian meta-ecosystems are strongly connected through exchanges of energy, material and organisms. Land use can disrupt ecological connectivity by affecting community composition directly and/or indirectly by altering the instream and riparian habitats that support biological structure and function. Although forested riparian buffers are increasingly used as a management intervention, our understanding of their effects on the functioning of stream–riparian metaecosystems is limited. This study assessed patterns in the longitudinal and lateral profiles of streams in modified landscapes across Europe and Sweden using a pairedreach approach, with upstream unbuffered reaches lacking woody riparian vegetation and with downstream reaches having well-developed forested buffers. The presence of buffers was positively associated with stream ecological status as well as important attributes, which included instream shading and the provision of suitable habitats for instream and riparian communities, thus supporting more aquatic insects (especially EPT taxa). Emergence of aquatic insects is particularly important because they mediate reciprocal flows of subsidies into terrestrial systems. Results of fatty acid analysis and prey DNA from spiders further supported the importance of buffers in providing more aquatic-derived quality food (i.e. essential fatty acids) for riparian spiders. Findings presented in this thesis show that buffers contribute to the strengthening of cross-ecosystem connectivity and have the potential to affect a wide range of consumers in modified landscapes

    Similar works