Adaptivity as a Property to Achieve Resilience of Load-Carrying Systems

Abstract

Load-carrying systems often suffer from unexpected disruptions which can cause damages or system breakdowns if they were neglected during product development. In this context, unexpected disruptions summarize unpredictable load conditions, external disturbances or failures of system components and can be comprehended as uncertainties caused by nescience. While robust systems can cope with stochastic uncertainties, uncertainties caused by nescience can be controlled only by resilient load-carrying systems. This paper gives an overview of the characteristics of resilience as well as the time-dependent resilient behaviour of subsystems. Based on this, the adaptivity of subsystems is classified and can be distinguished between autonomous and externally induced adaption and the temporal horizon of adaption. The classification of adaptivity is explained using a simple example of a joint brake application

    Similar works