thesis

Defect Engineering in HfO2/TiN-based Resistive Random Access Memory (RRAM) Devices by Reactive Molecular Beam Epitaxy

Abstract

Recently, there has been huge interest in emerging memory technologies, spurred by the ever increasing demand for storage capacities in various applications like Internet of Things (IoT), Big Data, etc. CMOS based flash memory, the current mainstay of the memory technology, has been able to increase its density by scaling down to a 16 nm node and further implementation of 3D architectures. However, flash memory is expected to soon run into disadvantage due to challenges in further scaling. Therefore, extensive efforts are being made towards developing new devices for the next generation of non-volatile memories with the combined advantages of flash memory like non-volatility, high density, low cost and low power consumption as well as high speed performance of DRAM. Among the many competitors, resistive random access memories (RRAM) based on resistive switching in oxides are promising due to its simple metal-insulator-metal (MIM) structure, fast switching speeds (<10 ns), excellent scalability (<10 nm) and potential for multi-level switching. RRAM devices based on the popular dielectric-metal gate combination of hafnium oxide (HfO2) and titanium nitride (TiN), which is the subject of research in this work, are particularly interesting due to its compatibility with existing CMOS technology in addition to the aforementioned advantages. Though prototype RRAM chips have already been demonstrated, key problems for commercial realization of RRAM include large variability and insufficient understanding of the complex switching physics. Resistive switching mechanism in oxides is generally understood to be mediated via the transport of oxygen ions leading to the formation of a conductive filament composed of oxygen vacancy defects. Appropriate defect engineering approaches offer potential towards tailoring the switching behavior as well as improving the performance and yield of HfO2-RRAM. In this thesis, the impact of pre-induced defects on the resistive switching behavior of HfO2-RRAM is investigated in detail and our results are presented. Defect engineered oxide thin films were deposited using reactive molecular beam epitaxy (RMBE) to fabricate metal oxide/TiN based devices. RMBE technique offers the unique possibility to precisely and reproducibly control the oxygen stoichiometry of the thin films in a wide range. Using RMBE, defects were introduced in polycrystalline HfOx thin films intrinsically by oxygen stoichiometry engineering and extrinsically via impurity doping (trivalent lanthanum and pentavalent tantalum). Both the studies were performed at at CMOS compatible deposition temperatures (< 450 °C) with an eye on practical applications. Prior to tantalum doping in HfO2, oxygen stoichiometry engineering studies were also performed in amorphous tantalum oxide (TaOx) thin films to identify the oxidation conditions of tantalum metal. The density of oxygen stoichiometry engineered thin films of HfOx and TaOx could be tuned in a wide range from that of the bulk oxide density to close to metallic density. High degree of oxygen deficiency in oxides led to the formation of defect states near the Fermi level as well as multiple oxidation states of the metal, as observed by X-ray photoelectron spectroscopy (XPS). The pure stoichiometric hafnium oxide films crystallize as expected in a stable monoclinic structure (m-HfO2) whereas, oxygen deficient HfOx thin films were found to crystallize in vacancy stabilized tetragonal like structure (t-HfO2-x). Impurity doping also led to the stabilization of higher symmetry tetragonal (t-Ta:HfOx) or cubic structures (c-La:HfOx) depending on the ionic radii of the dopant. The growth of TiN thin films was also investigated using RMBE. The devices used for electrical studies in this work mostly involved deposition of oxides by RMBE on polycrystalline TiN/Si electrodes after ex-situ transfer for further deposition. Therefore, RMBE grown TiN thin film electrodes with similar or better quality would allow in-situ uninterrupted deposition of subsequent oxide layers in future to form cleaner interfaces. Optimized conditions for growth of epitaxial TiN films on the commercially relevant (001) oriented silicon and c-cut sapphire substrates were established, with focus on achieving smooth surfaces and low resistivity. High quality epitaxial TiN(111)||Al2O3(0001) and TiN(001)||Si(001) films with a low resistivity (20-200 uOhm.cm) were achieved, in spite of the large lattice mismatch. Very low surface roughness, characterized by a streaky reflection high energy electron diffraction (RHEED) pattern during TiN film growth was additionally obtained, by tuning the Ti/N flux ratios. Oxygen engineered HfOx/TiN devices were further electrically characterized to obtain I-V characteristics during quasi-static DC switching. Usually, an initial electroforming step (high voltages) is required to obtain further reproducible switching operation (at lower voltages). High device to device variability in RRAM is typically associated with the stochastic nature of electroforming process which increases at higher forming voltages. Using highly oxygen deficient HfOx and TaOx films, the forming voltages were found to be reduced to levels close to operating voltages, paving the way for forming-free devices. However, the use of high defect concentration adds to increasing the complexity of the switching mechanism. This is reflected in the rather complex and dissimilar switching behaviors observed in the myriad of similar RRAM devices reported in the rapidly growing literature. Using model Pt/HfOx/TiN-based device stacks; it is shown that a well-controlled oxygen stoichiometry governs the filament formation and the (partial) occurrence of multiple resistive switching modes (bipolar, unipolar, threshold, complementary). These findings fuel a better fundamental understanding of the underlying phenomena for future theoretical considerations. The oxygen vacancy concentration is found to be the key factor in manipulating the balance between electric field and Joule heating during formation, rupture (reset), and reformation (set) of the conductive filaments in the dielectric. While a bipolar switching occurs in all the devices irrespective of defect concentration, switching modes like unipolar and threshold switching is favored only at higher oxygen stoichiometry. This suggests the suppression of thermal effects via higher heat dissipation and lowered concentration gradient of oxygen vacancies in oxygen deficient devices. A qualitative switching model based on the drift, diffusion and thermophoresis of oxygen ions is suggested to account for the partial occurrence of various switching modes depending on the oxygen stoichiometry. Further, the evolution or drift of high resistance states during endurance test of the common bipolar operation is compared for HfO2 and HfO1.5 based devices and interpreted using the quantum point contact (QPC) model. Similar observations regarding switching modes were also obtained in oxygen engineered Pt/TaOx/TiN devices, therefore allowing the findings to be generalized to other filamentary resistive switching oxides and contributing towards developing a unified switching model. Besides finding application as non-volatile memory, RRAM devices are also promising for hardware implementation of neuromorphic computing. This is motivated by the possibility of multi-level switching or gradual (analog) modulation of resistance in an RRAM device which can emulate biological synapses. Defect engineering approaches have thus been investigated in Pt/hafnium oxide/TiN devices for tuning the DC I-V switching dynamics to achieve multi-level or gradual switching electronic synapses. Higher contribution of thermal effects in pure stoichiometric HfO2 typically results in a single sharp set process and abrupt sharp current jumps during the reset process during a conventional bipolar operation. By using ~18% La-doped HfOx based device, a completely gradual reset behavior with a higher ON/OFF ratio could be achieved during the bipolar reset operation. This is likely related to filament stabilization around the dopant sites allowing a uniform rupture during reset. More interestingly, in oxygen deficient HfO1.5 based devices, intermediate conductance states corresponding to integer or half-integer multiples of quantum conductance (G0) was observed during both the set and reset operations at room temperature. These are related to the better stabilization of intermediate atomic size filament constrictions during the switching process. Occurrence of these intermediate quantum conductance states, especially during the typically abrupt set process, is likely aided by a weaker filament and better thermal dissipation in the highly oxygen deficient devices. These results suggest that a combination of doping and high oxygen vacancy concentration may lead to improved synaptic functionality with concurrent gradual set and reset behaviors

    Similar works