Optimal control of a motor-integrated hybrid powertrain for a two-wheeled vehicle suitable for personal transportation

Abstract

The present research aims to propose an optimized configuration of the motor integrated power-train with an optimal controller suitable for small power-train based two wheeler automobile which can increase the system level efficiency without affecting drivability. This work will be the foundation for realizing the system in a production ready vehicle for the two wheeler OEM TVS Motor Company in India. A detailed power-train model is developed (from first principles) for the scooter vehicle, which is powered by a 110 cc spark ignition (SI) engine and coupled with two types of transmission, a continuous variable transmission (CVT) and a 4-speed manual transmission (MT). Both models are capable of simulating torque and NOx emission output of the SI engine and dynamic response of the full power-train. The torque production and emission outputs of the model are compared with experimental results available from TVS Motor Company. The CVT gear ratio model is developed using an indirect method and an analytical model. Both types of powertrain models are applied to perform a simulated study of fuel consumption, NOx emission and drivability study for a particular vehicle platform. In the next stage of work, the mathematical model for a brush-less direct current machine (BLDC) with the drive system and Li-Ion battery are developed. The models are verified and calibrated with the experimental results from TVS Motor Company. The BLDC machine is integrated with both the CVT and MT powertrain models in parallel hybrid configurations and a drive cycle simulation is conducted for different static assist levels by the electrical machines. The initial test confirms the need of optimal sizing of the powertrain components as well as an optimal control system. The detailed model of the powertrain is converted to a control-oriented model which is suitable for optimal control. This is followed by multi-objective optimization of different components of the motor-integrated powertrain using a single function as well as Pareto-Optimal methods. The objective function for the multi-objective optimization is proposed to reduce the fuel consumption with battery charge sustainability with least impact on the increase of financial cost and weight of the vehicle. The optimization is conducted by a nested methodology that involves Particle Swarm Optimization and a Non-dominated sorting genetic algorithm where, concurrently, a global optimal control is developed corresponding to the multi-objective design. The global optimal controller is designed using dynamic programming. The research is concluded with an optimal controller developed using the hp-collocation method. The objective function of the dynamic programming method and hp-collocation method is proposed to reduce fuel consumption with battery charge sustainability.Open Acces

    Similar works