Intelligent data analytics gradually becomes a day-to-day reality of today's businesses. However, despite rapidly
increasing storage and computational power current state-of-the-art predictive models still can not handle massive and noisy
corporate data warehouses. What is more adaptive and real-time operational environment requires multiple models to be
frequently retrained which fiirther hinders their use. Various data reduction techniques ranging from data sampling up to
density retention models attempt to address this challenge by capturing a summarised data structure, yet they either do
not account for labelled data or degrade the classification performance of the model trained on the condensed dataset. Our
response is a proposition of a new general framework for reducing the complexity of labelled data by means of controlled
spatial redistribution of class densities in the input space. On the example of Parzen Labelled Data Compressor (PLDC) we
demonstrate a simulatory data condensation process directly inspired by the electrostatic field interaction where the data are
moved and merged following the attracting and repelling interactions with the other labelled data. The process is controlled
by the class density function built on the original data that acts as a class-sensitive potential field ensuring preservation of
the original class density distributions, yet allowing data to rearrange and merge joining together their soft class partitions.
As a result we achieved a model that reduces the labelled datasets much further than any competitive approaches yet with
the maximum retention of the original class densities and hence the classification performance. PLDC leaves the reduced
dataset with the soft accumulative class weights allowing for efficient online updates and as shown in a series of experiments
if coupled with Parzen Density Classifier (PDC) significantly outperforms competitive data condensation methods in terms of
classification performance at the comparable compression levels