The effects of endurance training and estrogen-related receptor α disruption on mitofusin 1 and 2, GLUT2, PPARβ/δ and SCD1 expression in the liver of diabetic rats

Abstract

Diabetes is a progressive and metabolic disease with a high prevalence throughout the world. Physical activity is considered as an intervention to improve diabetes. Intervention such as estrogen-related receptor α (ERRα) inhibition is considered as a new way to manage diabetes. In current study, we examined ERRα inhibition along with exercise training (ET) on the gene expression of mitofusin 1 (MFN1), MFN2, glucose transporter 2 (GLUT2), peroxisome proliferator-activated receptor beta or delta (PPARβ/δ), and stearoyl-CoA desaturase 1 (SCD1) in rat liver. The animals were divided into 8 groups (n = 7); 1, Control (CTL) 2, Diabetes (D) 3, ERRα inhibition (ERRI) 4, Endurance Training (ET) 5, Diabetes+ERRα inhibition (D+ERRI) 6, Diabetes+Endurance training (D+ET) 7, Endurance Training+ERRα inhibition (ET+ERRI) 8, Diabetes+Endurance Training+ERRα inhibition (D+ET+ERRI). The liver tissues were used for Real-Time PCR. The results showed that ET significantly increased PPARδ, MFN1 and, MFN2 expression in control rats compared to D group. In ERRI group, SCD1, GLUT2, MFN1 and MFN2 gene expression was increased compared to CTL and DM group. In CTL and D rats, the combination of ERRα inhibition and ET significantly and additively increased MFN1, MFN2, and GLUT2 expression. Overall, the combination of ET and ERRα inhibition probably can be considered as a potential therapeutic intervention for treatment of metabolic diseases including diabetes and cardiovascular disease. © 2020 Shahouzehi B. et al

    Similar works

    Full text

    thumbnail-image

    Available Versions