Pentoxifylline improves the survival of spermatogenic cells via oxidative stress suppression and upregulation of PI3K/AKT pathway in mouse model of testicular torsion-detorsion

Abstract

Testicular torsion-detorsion results in enhanced formation of free radicals which contribute to the pathophysiology of testicular tissue damage. Recent reports have identified protective role of pentoxifylline (PTX) against free radicals. Thus, we determined the protective effect of pentoxifylline against testicular damage in mouse model of testicular torsion-detorsion. Twenty (6 weeks old) male mice were divided into 4 groups of 5 animals each namely: Control (sham operated group), T1 (Torsion-detosion + single dose 100 mg/kg PTX, T2 (torsion-detorsion + 20 mg/kg PTX for 2 weeks and T/D (torsion-detorsion only). Animals in T1, T2 and T/D groups underwent 2 h of testicular torsion with the left testes rotated 720° (clockwisely) followed by 30 min of detorsion. After detorsion, drug administration was done intraperitoneally. The left testes of all the animals were excised on the 35th day after torsion-detortion for histopathological and biochemical assay. Histomorphological analysis of the seminiferous tubules showed that there were significant increase (P 0.05) in testes weight, sertoli, leydig and myoid cells in all groups. IHC results showed significant increase (P < 0.01 or 0.05) in id4 and scp3 protein markers in Control, T1 and T2 compared to T/D. Oxidative stress analysis revealed that Pentoxifylline significantly increased (P < 0.01 or 0.05) the level of SOD, catalase, mRNA expression of akt and pi3k genes but significantly suppress (P < 0.01 or 0.05) MDA and Caspase-3 level in Control, T1 and T2 compared to T/D. Pentoxifylline could be used as an adjunct therapy to surgery in the treatment of torsion-detorsion related testicular injury, However, Further studies are needed to evaluate the effects of pentoxifylline on testicular torsion. © 202

    Similar works

    Full text

    thumbnail-image

    Available Versions