CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
First fabrication of full 3D-detectors at SINTEF
Authors
Cinzia Da' Via
Thor-Erik Hansen
+8 more
Trond A Hansen
Jasmine Hasi
Chris Kenney
Angela Kok
Nicolas Lietaer
Michal Mielnik
Sherwood Parker
Preben Storas
Publication date
1 January 2009
Publisher
Doi
Abstract
3D-detectors, with electrodes penetrating through the entire substrates have drawn great interests for high energy physics and medical imaging applications. Since its introduction by C. Kenney et al in 1995, many laboratories have begun research on different 3D-detector structures to simplify and industrialise the fabrication process. SINTEF MiNaLab joined the 3D collaboration in 2006 and started the first 3D fabrication run in 2007. This is the first step in an effort to fabricate affordable 3D-detectors in small to medium size production volumes. The first run was fully completed in February 2008 and preliminary results are promising. Good p-n junction characteristics have been shown on selected devices at the chip level with a leakage current of less than 0.5 nA per pixel. Thus SINTEF is the second laboratory in the world after the Stanford Nanofabrication Facility that has succeeded in demonstrating full 3D-detectors with active edge. A full 3D-stacked detector system were formed by bump-bonding the detectors to the ATLAS readout electronics, and successful particle hit maps using an Am-241 source were recorded. Most modules, however, showed largely increased leakage currents after assembly, which is due to the active edge and p-spray acting as part of the total chip pn-junction and not as a depletion stop. This paper describes the first fabrication and the encountered processing issues. The preliminary measurements on both the individual detector chips and the integrated 3D-stacked modules are discussed. A new lot has now been started on p-type wafers, which offers a more robust configuration with the active edge acting as depletion stop instead of part of the pn-junction. © 2009 IOP Publishing Ltd and SISSA
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
CERN Document Server
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:cds.cern.ch:1207102
Last time updated on 09/08/2016
The University of Manchester - Institutional Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:pure.atira.dk:publications...
Last time updated on 01/02/2017
The University of Manchester - Institutional Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:pure.atira.dk:openaire_cri...
Last time updated on 09/10/2025