research

Conceptual design of superferric magnets for PS2

Abstract

We analyze feasibility and cost of a superferric magnet design for the PS2. Specifically, we provide the conceptual design of dipole and quadrupoles, including considerations on cryogenics and powering. The magnets have warm iron yoke, and cryostated superconducting coils embedded in the magnet, which reduces AC loss at cryogenic temperature. The superconductor has large Operating margin to endure beam loss and operating loads over a long period of time. Although conservative, and without any critical dependence on novel technology developments, this superconducting option appears to be attractive as a low-power alternative to the normal-conducting magnets that are the present baseline for the PS2 design. In addition it provides flexibility in the selection of flat-top duration at no additional cost. This study is the conclusion of the conceptual design work started within the scope of the CARE HHH-AMT activities, following inputs from the workshops ECOMAG and LUMI-06, and finally spurred by the recent discussions on the opportunity of an R&D for the PS2 magnets

    Similar works