CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
thesis
Bootstrap Methods: A Guide for Practitioners and Researchers
Authors
Michael R Chernick
Publication date
1 January 2007
Publisher
'Royal College of Obstetricians & Gynaecologists (RCOG)'
Abstract
Includes bibliographical references (p. 188-329) and indexes.1. What is bootstrapping? -- 1.1. Background -- 1.2. Introduction -- 1.3. Wide range of applications -- 1.4. Historical notes -- 1.5. Summary -- 2. Estimation -- 2.1. Estimating bias -- 2.1.1. How to do it by bootstrapping -- 2.1.2. Error rate estimation in discrimination -- 2.1.3. Error rate estimation: an illustrative problem -- 2.1.4. Efron's patch data example -- 2.2. Estimating location and dispersion -- 2.2.1. Means and medians -- 2.2.2. Standard errors and quartiles -- 2.3. Historical notes -- 3. Confidence sets and hypothesis testing -- 3.1. Confidence sets -- 3.1.1. Typical value theorems for M-estimates -- 3.1.2. Percentile method -- 3.1.3. Bias Correction and the Acceleration Constant -- 3.1.4. Iterated Bootstrap -- 3.1.5. Bootstrap Percentile t Confidence Intervals -- 3.2. Relationship Between Confidence Intervals and Tests of Hypotheses -- 3.3. Hypothesis Testing Problems -- 3.3.1. Tendril DX Lead Clinical Trial Analysis --^3.4. Application of bootstrap confidence Intervals to Binary Dose-Response Modeling -- 3.5. Historical Notes -- 4. Regression analysis -- 4.1. Linear Models -- 4.1.1. Gauss-Markov Theory -- 4.1.2. Why Not Just Use Least Squares? -- 4.1.3. Should I Bootstrap the Residuals from the Fit? -- 4.2. Nonlinear Models -- 4.2.1. Examples of Nonlinear Models -- 4.2.2. Quasi-optical Experiment -- 4.3. Nonparametric Models -- 4.4. Historical Notes -- 5. Forecasting and Time Series Analysis -- 5.1. Methods of Forecasting -- 5.2. Time Series Models -- 5.3. When Does Bootstrapping Help with Prediction Intervals? -- 5.4. Model-Based Versus Block Resampling -- 5.5. Explosive Autoregressive Processes -- 5.6. Bootstrapping-Stationary Arma Models -- 5.7. Frequency-Based Approaches -- 5.8. Sieve Bootstrap -- 5.9. Historical notes -- 6. Which resampling Method Should You Use? -- 6.1. Related Methods -- 6.1.1. Jackknife -- 6.1.2. Delta Method, Infinitesimal Jackknife, and Influence Functions --^6.1.3. Cross-Validation -- 6.1.4. Subsampling -- 6.2. Bootstrap variants -- 6.2.1. Bayesian bootstrap -- 6.2.2. Smoothed bootstrap -- 6.2.3. Parametric Bootstrap -- 6.2.4. Double bootstrap -- 6.2.5. m-out-of-n Bootstrap -- 7. Efficient and Effective Simulation -- 7.1. How Many Replications? -- 7.2. Variance Reduction Methods -- 7.2.1. Linear Approximation -- 7.2.2. Balanced Resampling -- 7.2.3. Antithetic Variates -- 7.2.4. Importance Sampling -- 7.2.5. Centering -- 7.3. When Can Monte Carlo Be Avoided? -- 7.4. Historical Notes -- 8. Special Topics -- 8.1. Spatial Data -- 8.1.1. Kriging -- 8.1.2. Block Bootstrap on Regular Grids -- 8.1.3. Block Bootstrap on Irregular Grids -- 8.2. Subset Selection -- 8.3. Determining the Number of Distributions in a Mixture Model -- 8.4. Censored Data -- 8.5. p-Value Adjustment -- 8.5.1. Description of Westfall-Young Approach -- 8.5.2. Passive Plus OX Example -- 8.5.3. Consulting Example -- 8.6. Bioequivalence Applications --^8.6.1. Individual Bioequivalence -- 8.6.2. Population Bioequivalence -- 8.7. Process Capability Indices -- 8.8. Missing Data -- 8.9. Point Processes -- 8.10. Lattice Variables -- 8.11. Historical Notes -- 9. When Bootstrapping Fails Along with Remedies for Failures -- 9.1. Too Small of a Sample Size -- 9.2. Distributions with Infinite Moments -- 9.2.1. Introduction -- 9.2.2. Example of Inconsistency -- 9.2.3. Remedies -- 9.3. Estimating Extreme Values -- 9.3.1. Introduction -- 9.3.2. Example of Inconsistency -- 9.3.3. Remedies -- 9.4. Survey Sampling -- 9.4.1. Introduction -- 9.4.2. Example of Inconsistency -- 9.4.3. Remedies -- 9.5. Data Sequences that Are M-Dependent -- 9.5.1. Introduction -- 9.5.2. Example of Inconsistency When Independence Is Assumed -- 9.5.3. Remedies -- 9.6. Unstable Autoregressive Processes -- 9.6.1. Introduction -- 9.6.2. Example of Inconsistency -- 9.6.3. Remedies -- 9.7. Long-Range Dependence -- 9.7.1. Introduction -- 9.7.2. Example of Inconsistency --^9.7.3. Remedies -- 9.8. Bootstrap Diagnostics -- 9.9. Historical Notes
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
CERN Document Server
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:cds.cern.ch:1086317
Last time updated on 09/08/2016
library.unisma.ac.id
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:library.unisma.ac.id:slims...
Last time updated on 25/11/2022
Archivsystem Ask23
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:search.ugent.be:rug01:0020...
Last time updated on 29/06/2023