Fan和Zeng在[1]中提出了S-λ基函数和S-λ曲线的概念,并指出可以通过扰动生成函 数系数来对S-λ曲线形状进行调整。本文在此基础上进一步给出了当对生成函数单一系 数进行扰动时,扰动后的曲线与原曲线之间的相应关系以及两者到控制顶点的距离之 间的关系。对两类特殊控制多边形结构的三次Bezier曲线受到扰动后曲线变化情况做了 相应的分析,并给出了曲线变化的趋势。 另一方面,针对经典的Bezier曲线在控制顶点给定,曲线就唯一固定,缺乏进一步 调整曲线形状能力的这一状况,本文给出了一种带两个形状参数的Bezier曲线。这种带 形状参数的Bezier曲线保留了经典Bezier曲线的...In [1], Fan and Zeng introduced S-λ bases and S-λ curves, they also pointed out that we can adjust the shape of S-λ curves through disturbing the coefficients of generating function. In this paper, we do a further research on this method and give some conclusions about the relationships between the after-disturbing curve and the normal curve and the function of distance between the two curve and a...学位:理学硕士院系专业:数学科学学院_概率论与数理统计学号:1902010115250