slides

Multivariate Methods for Monitoring Structural Change

Abstract

Detection of structural change is a critical empirical activity, but continuous 'monitoring' of series, for structural changes in real time, raises well-known econometric issues that have been explored in a single series context. If multiple series co-break then it is possible that simultaneous examination of a set of series helps identify changes with higher probability or more rapidly than when series are examined on a case-by-case basis. Some asymptotic theory is developed for maximum and average CUSUM detection tests. Monte Carlo experiments suggest that these both provide an improvement in detection relative to a univariate detector over a wide range of experimental parameters, given a sufficiently large number of co-breaking series. This is robust to a cross-sectional correlation in the errors (a factor structure) and heterogeneity in the break dates. We apply the test to a panel of UK price indices.Monitoring, Structural change, Panel, CUSUM, Fluctuation test

    Similar works