Intercepted radiation by apple canopy can be used as a basis for irrigation scheduling

Abstract

Improved approaches for irrigation scheduling require specific protocols for adaptation to different growing conditions. We assessed crop intercepted radiation as the main factor for decision on irrigation scheduling. Over two growing seasons (2007-2008), apple trees growing in a large weighing lysimeter were used to measure daily canopy transpiration (Td). Seasonal patterns of daily canopy intercepted photosynthetically active radiation (IPARd) and midday stem water potential were also measured. In 2007, irrigation was withheld in two different times to study Td responses to midday stem water potential. Before harvest, under full irrigation, Td increased linearly with IPARd (R2 = 0.81 in 2007 and 0.84 in 2008). With the two year data combined, R2 increased from 0.74 to 0.80 when VPD was considered as a second variable. When irrigation was withheld in 2007 the ratio between Td and IPARd, which is defined here as transpiratory radiation use efficiency (TRUE), decreased linearly (R2 = 0.49) as midday stem water potential decreased. Due to the highly significant effect of IPARd and VPD on Td, TRUE showed potential applications in estimating the amount of irrigation water.Light interception Malus domestica Water status Weighing lysimeter

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 06/07/2012