Interaction on Hypergraphs


Interaction on hypergraphs generalizes interaction on graphs, also known as pairwise local interaction. For games played on a hypergraph which are supermodular potential games, logit-perturbed best-response dynamics are studied. We find that the associated stochastically stable states form a sublattice of the lattice of Nash equilibria and derive comparative statics results for the smallest and the largest stochastically stable state. In the special case of networking games, we obtain comparative statics results with respect to investment costs, for Nash equilibria of supermodular games as well as for Nash equilibria of submodular games.

    Similar works