Design report of the specimens for all the experimental analyses - Deliverable D.4.1 - Robustimpact

Abstract

The present report focuses on the design of the experimental analysis that are going to be performed within the ROBUSTIMPACT project (Grant Agreement Number: RFSR-CT-2012-00029). The project focuses on the behavior of composite steel and concrete framed buildings against accidental actions. Within the project, several experimental analyses are going to be performed spanning from the local to the global behavior. The report is divided in 4 parts, each one describing the preliminary work of each partner of the project. In particular: Part A reports the work performed by USTUTT (University of Stuttgart) including the design of four experimental tests on composite joints and two experimental tests on composite frames. In particular, the composite joints will be investigated in order to better understand the behavior in terms of activation of catenary actions. The tests on composite frames are performed investigating the influence of the high speed loading and strain rate effects on the deformation capacity of these structures. Part B reports the work performed by ULg (University of Liege) including the design of 44 experimental impact tests on beam-to-column joints and column base joints. With these tests will be possible to investigate the response of different joint components under impact loading for different level of energy. Part C reports the work performed by UTRE (Università degli Studi di Trento) including the design of the case study reference structures and the design of the experimental tests. In particular, two 3D full scale tests will be performed by simulating to total loss of the impacted column in order to investigate the redundancy of the 3D slab system in terms of activation of membrane effects. Part D reports the work performed by RWTH (University of Aachen) including the design of six crash tests on columns that are going to be performed in order to investigate the residual strength of the damaged member after the impact. The aim is to determine the response of the member during the impact as well as the dynamic interaction of the member with the surrounding structure

    Similar works

    Full text

    thumbnail-image