CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
research
Long span steel pedestrian bridge at Singapore Changi Airport. Part 2: Crowd loading tests and vibration mitigation measures
Authors
James Brownjohn
P Fok
P Omenzetter
M Roche
Publication date
2 February 2016
Publisher
The Institution of Structural Engineers
Abstract
issue: 16article© Copyright The Institution of Structural EngineersFollowing experimental and analytical studies of vibration serviceability of a 140m span steel footbridge which predicted excessive and uncomfortable vertical and lateral vibration levels due to crowd loading, a series of walking tests involving up to 150 pedestrians was aimed at assessing the prototype behaviour under ‘limiting typical’ pedestrian loads in two vibration modes judged to be critical. In a walking test for possible instability resulting from so-called ‘synchronous lateral excitation’ (SLE), pedestrian volunteers were fed onto the bridge and told to walk casually. With all 150 available pedestrians circulating for several minutes, a steady increase in lateral vibrations was observed. This divergent response resembled the phenomenon observed during tests on the London Millennium Bridge (LMB), and while the maximum response reported here was an order of magnitude smaller than the largest levels reported for LMB on its opening day it was, apparently, uncomfortable for pedestrians. On the other hand, due to the apparent lack of synchronisation and random character of vertical loads together with enhanced damping due to the pedestrians themselves, vertical response levels were within acceptable comfort limits. From observations of pedestrian movement and the nature of response in vertical and lateral modes there appears to be an open question about the nature of any possible synchronisation of forces and the manner of generating and building up relatively large lateral amplitudes. To mitigate the potential for strong and unsafe lateral oscillation in the unlikely event of larger numbers of pedestrians, a tuned mass damping system has been installed. The damping in LS1 has been increased by a factor of approximately four, so that SLE is effectively prevented for any foreseeable reasonable pedestrian loading
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Supporting member
Open Research Exeter
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:ore.exeter.ac.uk:10871/195...
Last time updated on 03/08/2016