thesis

Etude du phénomène de la transition de spin dans les solides moléculaires à l'échelle nanométrique

Abstract

La réduction de taille dans les matériaux à transition de spin est un sujet actuel majeur. La conservation de la bistabilité dans des nanoparticules à transition de spin serait un atout pour de futures applications. Des récentes mesures expérimentales dans des nano-objets ont montré que la diminution de la taille des particules à transition de spin avait un impact non négligeable sur le comportement de la transition de spin thermique. L'objectif principal de ce travail de thèse est d'étudier et de comprendre la stabilité de phases de transition de spin, pour guider le développement de nouveaux objets originaux permettant le contrôle de ce phénomène à l'échelle nanométrique. En général, avec la diminution de la taille s'accompagne une perte de la bistabilité, un changement de la température de transition et l'apparition d'une fraction de molécules inactives. Un nouveau modèle se basant sur la nanothermodynamique a été introduit permettant la modélisation de la transition de spin dans des nanoparticules. Il a permis de mettre en évidence un élément moteur dans la transition de spin à l'échelle nanométrique : la surface. Ensuite, l'investigation des phénomènes de surface, ainsi que leurs mécanismes d'action sur la transition de spin, a été réalisée de manière plus approfondie par des études combinant la nanothermodynamique, la physique statistique et la mécanique des milieux continus. Cependant, dans certains cas de très petites nanoparticules de coordination (< 4 nm), une subsistance du phénomène de bistabilité a été observé. Des séries de mesures expérimentales de diffraction des rayons-X sur poudre, de spectroscopies Mössbauer classique et inélastique ont permis de mettre en évidence une exaltation de l'élasticité dans ces nanoparticules de coordination. En prenant en compte ce résultat expérimental dans le modèle nanothermodynamique, une réouverture du cycle d'hystérèse thermique est obtenue, conduisant à un résultat extrêmement important, à savoir la résurgence de la bistabilité dans les très petites nanoparticules à transition de spin.Size reduction in spin crossover materials is a current hot topic. The conservation of the bistability in spin crossover nanoparticles would be a real asset for future applications. Recent experimental measurements show that the decrease of the size of spin crossover particles has a direct impact on the thermal spin crossover behaviour. The principal aim of this work is to study and to understand the phase stability in spin crossover nano-objects. Using this knowledge, new kinds of nano-objects can be developed, allowing the control of the spin crossover behaviour. In general, when decreasing the size a loss of the bistability, a downshift of the transition temperature and the emergence of a fraction of inactive molecules is observed. A new model based on the nanothermodynamics is introduced to study the spin crossover phenomenon in nanoparticles. It demonstrates that the driving force of the spin transition at the nanometer scale comes from surface phenomena. Then, a deeper investigation of surface properties has been made, combining nanothermodynamics, statistical physics and continuum mechanics. However, in certain cases, very small coordination nanoparticles (< 4 nm) display a surprising bistable behaviour. An enhancement of the elasticity in these coordination nanoparticles has been observed through series of experimental measurements using powder X-ray diffraction as well as classic and inelastic Mössbauer spectroscopies. Taking into account this experimental result in the nanothermodynamic model, a reopening of the thermal hysteresis loop is obtained in ultra-small particles, providing exciting perspectives for future developments

    Similar works