research

Bidimensional Inequalities with an Ordinal Variable

Abstract

We investigate the normative foundations of two empirically implementable dominance criteria for comparing distributions of two attributes, where the first one is cardinal while the second is ordinal. The criteria we consider are Atkinson and Bourguignon\'s (1982) first quasi-ordering and a generalization of Bourguignon\'s (1989) ordered poverty gap criterion. In each case we specify the restrictions to be placed on the individual utility functions, which guarantee that all utility-inequality averse welfarist ethical observers will rank the distributions under comparison in the same way as the dominance criterion. We also identify the elementary inequality reducing transformations successive applications of which permit to derive the dominating distribution from the dominated one.Normative Analysis, Utilitarianism, Welfarism, Bidimensional Stochastic Dominance, Inequality Reducing Transformations

    Similar works