research

Bankruptcy Prediction: A Comparison of Some Statistical and Machine Learning Techniques

Abstract

We are interested in forecasting bankruptcies in a probabilistic way. Specifically, we compare the classification performance of several statistical and machine-learning techniques, namely discriminant analysis (Altman's Z-score), logistic regression, least-squares support vector machines and different instances of Gaussian processes (GP's) -that is GP's classifiers, Bayesian Fisher discriminant and Warped GP's. Our contribution to the field of computational finance is to introduce GP's as a potentially competitive probabilistic framework for bankruptcy prediction. Data from the repository of information of the US Federal Deposit Insurance Corporation is used to test the predictions.Bankruptcy prediction, Artificial intelligence, Supervised learning, Gaussian processes, Z-score.

    Similar works