The preoptic area is a well-established centre for the control of maternal behaviour. An intact medial preoptic area (mPOA) is required for maternal responsiveness because lesion of the area abolishes maternal behaviours. Although hormonal changes in the peripartum period contribute to the initiation of maternal responsiveness, inputs from pups are required for its maintenance. Neurones are activated in different parts of the mPOA in response to pup exposure. In the present review, we summarise the potential inputs to the mPOA of rodent dams from the litter that can activate mPOA neurones. The roles of potential indirect effects through increased prolactin levels, as well as neuronal inputs to the preoptic area, are described. Recent results on the pathway mediating the effects of suckling to the mPOA suggest that neurones containing the neuropeptide tuberoinfundibular peptide of 39 residues in the posterior thalamus are candidates for conveying the suckling information to the mPOA. Although the molecular mechanism through which these inputs alter mPOA neurones to support the maintenance of maternal responding is not yet known, altered gene expression is a likely candidate. Here, we summarise gene expression changes in the mPOA that have been linked to maternal behaviour and explore the idea that chromatin remodelling during mother-infant interactions mediates the long-term alterations in gene expression that sustain maternal responding