research

Stochastic equilibrium models for generation capacity expansion

Abstract

Capacity expansion models in the power sector were among the first applications of operations research to the industry. The models lost some of their appeal at the inception of restructuring even though they still offer a lot of possibilities and are in many respect irreplaceable provided they are adapted to the new environment. We introduce stochastic equilibrium versions of these models that we believe provide a relevant context for looking at the current very risky market where the power industry invests and operates. We then take up different questions raised by the new environment. Some are due to developments of the industry like demand side management: an optimization framework has difficulties accommodating them but the more general equilibrium paradigm offers additional possibilities. We then look at the insertion of risk related investment practices that developed with the new environment and may not be easy to accommodate in an optimization context. Specifically we consider the use of plant specific discount rates that we derive by including stochastic discount rates in the equilibrium model. Linear discount factors only price systematic risk. We therefore complete the discussion by inserting different risk functions (for different agents) in order to account for additional unpriced idiosyncratic risk in investments. These different models can be cast in a single mathematical representation but they do not have the same mathematical properties. We illustrate the impact of these phenomena on a small but realistic example.capacity adequacy, risk functions, stochastic equilibrium models, stochastic discount factors

    Similar works