research

A new method for satellite orbit determination using an operational worldwide transponder network

Abstract

The method utilizes computer programs developed for the forthcoming ATS-F/NIMBUS-F tracking and data relay experiment where the basic tracking measurements are multiple path round-trip propagation times and rates. This method of orbit computation has recently been successfully evaluated by tracking a geostationary satellite (ATS-3) using an existing VHF (150 MHz) network of automatic transponders. A master station sequentially interrogates each transponder via the ATS-3. The master site is located at Schenectady, N. Y. and four automatic transponders were located at Shannon, Reykajavik, Buenos Aires, and Seattle respectively. Data at hourly intervals were collected during a 24 hour period on April 18-19, 1973. After correcting this data for known systematic errors it was provided as input to an orbit determination program where all satellite motions during signal propagation are rigorously accounted for. The resulting estimated ATS-3 orbit yielded observational residuals on the order of 100 meters. By using more than one satellite the present scheme is further capable of accurately locating several stationary or mobile terminals as part of the overall orbital solution

    Similar works