research
A finite element analysis of fatigue crack closure
- Publication date
- Publisher
Abstract
Experiments have shown that fatigue cracks close at positive loads during constant-amplitude load cycling. The crack-closure phenomenon is caused by residual plastic deformations remaining in the wake of an advancing crack tip. The present paper is concerned with the application of a two-dimensional, nonlinear, finite-element analysis for predicting crack-closure and crack-opening stresses during cyclic loading. A two-dimensional finite-element computer program, which accounts for both elastic-plastic material behavior and changing boundary conditions associated with crack extension and intermittent contact of the crack surfaces under cyclic loading, has been developed. An efficient technique to account for changing boundary conditions was also incorporated into the nonlinear analysis program. This program was subsequently used to study crack extension and crack closure under constant-amplitude and two-level block loading. The calculated crack-closure and crack-opening stresses were qualitatively consistent with experimental observations