research
Maximum likelihood signature estimation
- Publication date
- Publisher
Abstract
Maximum-likelihood estimates are discussed which are based on an unlabeled sample of observations, of unknown parameters in a mixture of normal distributions. Several successive approximation procedures for obtaining such maximum-likelihood estimates are described. These procedures, which are theoretically justified by the local contractibility of certain maps, are designed to take advantage of good initial estimates of the unknown parameters. They can be applied to the signature extension problem, in which good initial estimates of the unknown parameters are obtained from segments which are geographically near the segments from which the unlabeled samples are taken. Additional problems to which these methods are applicable include: estimation of proportions and adaptive classification (estimation of mean signatures and covariances)