slides

Experimental investigation of a Mach 6 fixed-geometry inlet featuring a swept external-internal compression flow field

Abstract

An investigation of a fixed-geometry, swept external-internal compression inlet was conducted at a Mach number of 6.0 and a test-section Reynolds number of 1.55 x 10 to the 7th power per meter. The test conditions was constant for all runs with stagnation pressure and temperature at 20 atmospheres and 500 K, respectively. Tests were made at angles of attack of -5 deg, 0 deg, 3 deg, and 5 deg. Measurements consisted of pitot- and static-pressure surveys in inlet throat, wall static pressures, and surface temperatures. Boundary-layer bleed was provided on the centerbody and on the cowl internal surface. The inlet performance was consistently high over the range of the angle of attack tested, with an overall average total pressure recovery of 78 percent and corresponding adiabatic kinetic-energy efficiency of 99 percent. The inlet throat flow distribution was uniform and the Mach number and pressure level were of the correct magnitude for efficient combustor design. The utilization of a swept compression field to meet the starting requirements of a fixed-geometry inlet produced neither flow instability nor a tendency to unstart

    Similar works