thesis

Prediction of Externally Blown Flap Noise and Turbomachinery Strut Noise

Abstract

Methods were developed for predicting externally blown flap (EBF) noise and turbomachinery strut noise. Noise radiated by under-the-wing and upper-surface-blowing EBF configurations is calculated as a sum of lift dipole noise, trailing edge noise, and jet quadrupole noise. Resulting predictions of amplitudes and spectra generally were in good agreement with data from small-scale models. These data cover a range of exhaust velocity, flap deflection, exhaust nozzle position, exhaust nozzle shape, and ratio of exhaust nozzle diameter to wing chord. A semi-empirical method for predicting dipole noise radiation from a strut with incident turbulence was in good agreement with data. Leading-edge regions made of perforated plate backed by a bulk acoustic absorber achieved up to 7 db reduction of strut noise caused by incident turbulence at high frequencies. Radial turbulence in a turbofan exit duct was found to have a relatively high level associated with the mean velocity defect in the rotor blade wakes. Use of these turbulence spectra and a dipole noise radiation equation gave general prediction of measured aft-radiated sound power caused by a splitter ring in a full-scale fan exit duct

    Similar works