research

Geometry effects on STOL engine-over-the-wing acoustics with 5.1 slot nozzles

Abstract

The correspondence of far field acoustic trends with changes in the characteristics of the flow field at the wing trailing edge caused by alterations in the nozzle-wing geometry were determined for several STOL-OTW configurations. Nozzle roof angles of 10 to 40 deg were tested with and without cutback of the nozzle sidewalls. Three wing chord sizes were used: baseline (33 cm with flaps retracted), 2/3-baseline, and 3/2-baseline. Flap deflection angles of 20 and 60 deg were used. The nozzle locations were at 21 and 46-percent of chord. With increasing wing size the jet noise shielding benefits increased. With increasing nozzle roof angle, the jet velocity at the trailing edge was decreased, causing a decrease in trailing-edge and fluctuating lift noise. Cutback of the nozzle sides improved flow attachment and reduced far-field noise. The best flow attachment and least trailing-edge noise generally were obtained with a 40 deg external deflector configuration and a cutback nozzle with a 40 deg roof angle

    Similar works