research
Comparison of vortex lattice predicted forces with wind tunnel experiments for the F-4E(CCV) airplane with a closely coupled canard
- Publication date
- Publisher
Abstract
The F-4E (CCV) wind tunnel model with closely coupled canard control surfaces was analyzed by means of a version of a vortex lattice program that included the effects of nonlinear leading edge or side edge vortex lift on as many as four individual planforms. The results were compared with experimental data from wind tunnel tests of a 5% scale model tested at a Mach number M = 0.6. They indicated that a nonlinear vortex lift developed on the side edges due to tip vortices, but did not appear to develop on the leading edges within the range of angles of attack that were studied. Instead, substantial leading edge thrust was developed on the lifting surfaces. A configuration buildup illustrated the mutual interference between the wing and control surfaces. On the configuration studied, addition of the wing increased the loading on the canard, but the additional load on the canard due to adding the stabilator was small