research

Oscillatory combustion of liquid monopropellant droplets

Abstract

A theoretical investigation was conducted on the open-loop combustion response of monopropellant droplets and sprays to imposed pressure oscillations. The theoretical model was solved as a perturbation analysis through first order, yielding linear response results. Unsteady gas phase effects were considered in some cases, but the bulk of the calculations assumed a quasi-steady gas phase. Calculations were conducted using properties corresponding to hydrazine decomposition. Zero-order results agreed with earlier measurements of hydrazine droplet burning in combustion gases. The droplet response was greatest (exceeding unity in some cases) for large droplets with liquid phase temperature gradients; at frequencies near the characteristic frequency of the liquid phase thermal wave. The response of a spray is less than that of its largest droplet, however, a relatively small percentage of large droplets provides a substantial response (exceeding unity in some cases)

    Similar works