research

The stability of motion of satellites with cavities partially filled with liquid

Abstract

The stability and time dependent motion of a spinning satellite, simulated by a rigid body with a cavity partially filled with liquid is examined. The problem formulation, consisting of the boundary-value problem for the liquid and moment equations for the entire system is presented. Because of large Reynold's numbers involved, viscosity effects are negligible everywhere except for a thin boundary layer near the wetted surface. Using a boundary-layer analysis, the effect of the boundary layer is replaced by modified boundary conditions for the liquid. The solution of the differential equations for the inviscid problem is solved in closed form. A semi-analytical numerical solution of the inviscid equations subject to the viscous boundary condition has proved unsucessful

    Similar works