research

Experimental studies of effects of tilt and structural asymmetry on vibration characteristics of thin-wall circular cylinders partly filled with liquid

Abstract

The effects of tilt and structural asymmetry on the vibration characteristics of partly liquid-filled thin-wall cylinders were experimentally studied. It was found that tilting the longitudinal axis of a partly filled axisymmetric cylinder from the vertical could markedly reduce its resonant frequencies and change significantly the shape of the circumferential modes. For the minimum frequency modes, vibratory motion occurred only on that side of the cylinder where the liquid was deepest. An empirical equation was derived that gives the equivalent liquid depth of an untilted cylinder having the same minimum resonant frequency as a tilted, partly filled cylinder. Circumferential mode shapes of an untilted asymmetric cylinder were similar to those of the tilted, partly filled axisymmetric cylinder. Vibratory motion in the minimum frequency modes occurred in most instances only on the side of minimum thickness. Correlation between test data and results from a reformulated NASTRAN hydroelastic analysis was excellent

    Similar works