research
Susceptibility to hot corrosion of four nickel-base superalloys, NASA-TRW VIA, B-1900, 713C and IN-738
- Publication date
- Publisher
Abstract
The susceptibility to hot corrosion of four nickel-base, cast superalloys has been studied at 900 and 1000 C. The test consisted of coating alloy samples with known amounts of Na2SO4 and oxidizing the coated samples isothermally in 1 atmosphere of slowly flowing oxygen, the weight-gain being monitored on a sensitive recording microbalance. Susceptibility to hot corrosion decreased in the order of decreasing molybdenum content of the alloys. Preoxidation of samples before hot-corrosion testing markedly increased the induction period observed prior to the inception of hot corrosion for all alloys tested. X-ray diffraction analyses of the oxide scales were made. All samples that underwent hot corrosion showed the presence of a (Ni,Co)MoO4 layer near the alloy-oxide interface. Several specimens displayed resistance to hot corrosion and these showed NaTaO3 as a prominent feature in their oxide scale. Our results may be interpreted as indicating that molybdenum in an alloy is detrimental, with respect to hot corrosion, while tantalum is beneficial