research

Acoustic performance of two 1.83-meter-diameter fans designed for a wind-tunnel drive system

Abstract

A parametric study was made of the noise generated by two 1.83-m (6-ft) diameter fans operating up to a maximum pressure ratio of 1.03. One fan had 15 rotor blades, 23 stator blades, and a maximum rotational speed of 1200 rpm. The other fan had 9 rotor blades, 13 stator blades, and a maximum speed of 2,000 rpm. The fans were approximately 1/7-scale models of the 12.2-m (40-ft) diameter fans proposed for repowering the NASA-Ames 40- by 80 foot wind tunnel. The fans were operated individually in a 23.8-m (78-ft) long duct. Sound pressure levels in the duct were used to determine radiated acoustic power as fan speed, blade angle, and mass flow were varied. Results show that the low speed fan was slightly quieter than the high speed fan and, when scaled to full scale, would be 16 db quieter than the present wind tunnel fans. The fan noise varied directly with thrust regardless of whether thrust was varied by rotational speed or blade setting for the ranges studied

    Similar works