research

Shape optimization of pressure gradient microphones

Abstract

Recently developed finite element computer programs were utilized to investigate the influence of the shape of a body on its scattering field with the aim of determining the optimal shape for a Pressure Gradient Microphone (PGM). Circular cylinders of various aspect ratios were evaluated to choose the length to diameter ratio best suited for a dual element PGM application. Alterations of the basic cylindrical shape by rounding the edges and recessing at the centerline were also studied. It was found that for a + or - 1 db deviation from a linear pressure gradient response, a circular cylinder of aspect ratio near 0.5 was most suitable, yielding a useful upper frequency corresponding to ka = 1.8. The maximum increase in this upper frequency limit obtained through a number of shape alterations was only about 20 percent. An initial experimental evaluation of a single element cylindrical PGM of aspect ratio 0.18 utilizing a piezoresistive type sensor was also performed and is compared to the analytical results

    Similar works